
Motion Graphs
Lucas Kovar

University of Wisconsin-Madison
Michael Gleicher∗

University of Wisconsin-Madison
Frédéric Pighin†

University of Southern California
Institute for Creative Technologies

Abstract

In this paper we present a novel method for creating realistic, con-
trollable motion. Given a corpus of motion capture data, we au-
tomatically construct a directed graph called a motion graph that
encapsulates connections among the database. The motion graph
consists both of pieces of original motion and automatically gener-
ated transitions. Motion can be generated simply by building walks
on the graph. We present a general framework for extracting par-
ticular graph walks that meet a user’s specifications. We then show
how this framework can be applied to the specific problem of gen-
erating different styles of locomotion along arbitrary paths.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: motion synthesis, motion capture, animation with con-
straints

1 Introduction

Realistic human motion is an important part of media like video
games and movies. More lifelike characters make for more immer-
sive environments and more believable special effects. At the same
time, realistic animation of human motion is a challenging task, as
people have proven to be adept at discerning the subtleties of human
movement and identifying inaccuracies.

One common solution to this problem is motion capture. However,
while motion capture is a reliable way of acquiring realistic human
motion, by itself it is a technique for reproducing motion. Motion
capture data has proven to be difficult to modify, and editing tech-
niques are reliable only for small changes to a motion. This limits
the utility of motion capture — if the data on hand isn’t sufficiently

∗e-mail:{kovar,gleicher}@cs.wisc.edu
†e-mail:pighin@ict.usc.edu

similar to what is desired, then often there is little that can be done
other than acquire more data, a time-consuming and expensive pro-
cess. This in particular is a problem for applications that require
motion to be synthesized dynamically, such as interactive environ-
ments.

Our goal is to retain the realism of motion capture while also giving
a user the ability to control and direct a character. For example, we
would like to be able to ask a character to walk around a room
without worrying about having a piece of motion data that contains
the correct number of steps and travels in the right directions. We
also need to be able to direct characters who can perform multiple
actions, rather than those who are only capable of walking around.

This paper presents a method for synthesizing streams of motions
based on a corpus of captured movement while preserving the qual-
ity of the original data. Given a set of motion capture data, we com-
pile a structure called a motion graph that encodes how the captured
clips may be re-assembled in different ways. The motion graph is a
directed graph wherein edges contain either pieces of original mo-
tion data or automatically generated transitions. The nodes then
serve as choice points where these small bits of motion join seam-
lessly. Because our methods automatically detect and create transi-
tions between motions, users needn’t capture motions specifically
designed to connect to one another. If desired, the user can tune the
high-level structure of the motion graph to produce desired degrees
of connectivity among different parts.

Motion graphs transform the motion synthesis problem into one of
selecting sequences of nodes, or graph walks. By drawing upon
algorithms from graph theory and AI planning, we can extract graph
walks that satisfy certain properties, thereby giving us control over
the synthesized motions.

To demonstrate the potential of our approach, we introduce a sim-
ple example. We were donated 78.5 seconds of motion capture, or
about 2400 frames of animation, of a performer randomly walking
around with both sharp and smooth turns. Since the motion was
donated, we did not carefully plan out each movement, as the liter-
ature suggests is critical to successful application of motion capture
data [Washburn 2001]. From this data we constructed a motion
graph and used an algorithm described later in this paper to extract
motions that travelled along paths sketched on the ground. Charac-
teristic movements of the original data like sharp turns were auto-
matically used when appropriate, as seen in Figure 1.

It is possible to place additional constraints on the desired motion.
For example, we noticed that part of the motion had the character
sneaking around. By labelling these frames as special, we were able
to specify that at certain points along the path the character must
only use sneaking movements, and at other parts of the motion it
must use normal walking motions, as is also shown in Figure 1.

Copyright © 2002 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions Dept,
ACM Inc., fax +1 (212-869-0481 or e-mail p rmissions@acm.orge .
© 2002 ACM 1-58113-521-1/02/0007 $5.00

473

Figure 1: The top images show original motion capture data; two are walking motions and one is a sneaking motion. The black curves show the paths travelled by the character.
The bottom images show new motion generated by a motion graph built out of these examples plus their mirror images. Images 1 and 2 show the result of having the motion graph fit
walking motion to the smooth yellow paths. The black curve is the actual position of the center of mass on each frame. Image 3 shows motion formed by having the character switch
from walking to sneaking halfway down the path.

The remainder of this paper is organized as follows. In Section 2
we describe related work. In Section 3 we describe how a motion
graph is constructed from a database of motion capture. In Section 4
we set forth a general framework for extracting motion from the
motion graph that meets user specifications. Section 5 discusses the
specific problem of generating movements along a path and how
it is handled in our framework. We conclude in Section 6 with a
discussion of the scalability of our approach to large data sets and
potential future work.

2 Related Work

Much previous work with motion capture has revolved around
editing individual clips of motion. Motion warping [Witkin and
Popović 1995] can be used to smoothly add small changes to a mo-
tion. Retargeting [Gleicher 1998; Lee and Shin 1999] maps the
motion of a performer to a character of different proportions while
retaining important constraints like footplants. Various signal pro-
cessing operations [Bruderlin and Williams 1995] can be applied
to motion data. Our work is different from these efforts in that it
involves creating continuous streams of motion, rather than modi-
fying specific clips.

One strategy for motion synthesis is to perform multi-target blends
among a set of examples, yielding a continuous space of parame-
terized motion. Wiley and Hahn [1997] used linear interpolation
to create parameterizations of walking at various inclinations and
reaching to various locations. Rose et al. [1998] used radial ba-
sis functions to blend among clips representing the same motion
performed in different styles. These works have a focus comple-
mentary to ours: while they are mainly concerned with generating
parameterizations of individual clips, we are concerned with con-
structing controllable sequences of clips.

Another popular approach to motion synthesis is to construct statis-
tical models. Pullen and Bregler [2000] used kernel-based proba-
bility distributions to synthesize new motion based on the statistical

properties of example motion. Coherency was added to the model
by explicitly accounting for correlations between parameters. Bow-
den [2000], Galata et al. [2001], and Brand and Hertzmann [2000]
all processed motion capture data by constructing abstract “states”
which each represent entire sets of poses. Transition probabilities
between states were used to drive motion synthesis. Since these
statistical models synthesize motion based on abstractions of data
rather than actual data, they risk losing important detail. In our
work we have tighter guarantees on the quality of generated mo-
tion. Moreover, these systems did not focus on the satisfaction of
high-level constraints.

We generate motion by piecing together example motions from a
database. Numerous other researchers have pursued similar strate-
gies. Perlin [1995] and Perlin and Goldberg [1996] used a rule-
based system and simple blends to attach procedurally generated
motion into coherent streams. Faloutsos et al. [2001] used sup-
port vector machines to create motion sequences as compositions
of actions generated from a set of physically based controllers.
Since our system involves motion capture data, rather than proce-
dural or physically based motion, we require different approaches
to identifying and generating transitions. Also, these systems were
mainly concerned with appropriately generating individual transi-
tions, whereas we address the problem of generating entire motions
(with many transitions) that meet user-specified criteria. Lamouret
and van de Panne [1996] developed a system that used a database
to extract motion meeting high-level constraints. However, their
system was applied to a simple agent with five degrees of freedom,
whereas we generate motion for a far more sophisticated charac-
ter. Molina-Tanco and Hilton [2000] used a state-based statistical
model similar to those mentioned in the previous paragraph to re-
arrange segments of original motion data. These segments were
attached using linear interpolation. The user could create motion
by selecting keyframe poses, which were connected with a high-
probability sequence of states. Our work considers more general
and sophisticated sets of constraints.

Work similar to ours has been done in the gaming industry to meet
the requirements of online motion generation. Many companies use

474

move trees [Mizuguchi et al. 2001], which (like motion graphs) are
graph structures representing connections in a database of motion.
However, move trees are created manually — short motion clips are
collected in carefully scripted capture sessions and blends are cre-
ated by hand using interactive tools. Motion graphs are constructed
automatically. Also, move trees are typically geared for rudimen-
tary motion planning (“I want to turn left, so I should follow this
transition”), as opposed to more complicated objectives.

The generation of transitions is an important part of our approach.
Early work in this area was done by Perlin [1995], who presented a
simple method for smoothly interpolating between two clips to cre-
ate a blend. Lee [2000] defined orientation filters that allowed these
blending operations to be performed on rotational data in a more
principled fashion. Rose et al. [1996] presented a more complex
method for creating transitions that preserved kinematic constraints
and basic dynamic properties.

Our main application of motion graphs is to control a character’s
locomotion. This problem is important enough to have received
a great deal of prior attention. Because a character’s path isn’t
generally known in advance, synthesis is required. Procedural and
physically based synthesis methods have been developed for a few
activities such as walking [Multon et al. 1999; Sun and Metaxas
2001] and running [Hodgins et al. 1995; Bruderlin and Calvert
1996]. While techniques such as these can generate flexible motion
paths, the current range of movement styles is limited. Also, these
methods do not produce the quality of motion attainable by hand
animation or motion capture. While Gleicher [2001] presented a
method for editing the path traversed in a clip of motion capture,
it did not address the need for continuous streams of motion, nor
could it choose which clip is correct to fit a path (e.g. that a turning
motion is better when we have a curved path).

Our basic approach — detecting transitions, constructing a graph,
and using graph search techniques to find sequences satisfying user
demands — has been applied previously to other problems. Schödl
et al. [2000] developed a similar method for synthesizing seamless
streams of video from example footage and driving these streams
according to high-level user input.

Since writing this paper, we have learned of similar work done
concurrently by a number of research groups. Arikan and
Forsythe [2002] constructed from a motion database a hierarchi-
cal graph similar to ours and used a randomized search algorithm
to extract motion that meets user constraints. Lee et al. [2002] also
constructed a graph and generated motion via three user interfaces:
a list of choices, a sketch-based interface similar to what we use
for path fitting (Section 5), and a live video feed. Pullen and Bre-
gler [2002] keyframed a subset of a character’s degrees of freedom
and matched small segments of this keyframed animation with the
lower frequency bands of motion data. This resulted in sequences
of short clips forming complete motions. Li et al [2002] generated
a two-level statistical model of motion. At the lower level were lin-
ear dynamic systems representing characteristic movements called
“textons”, and the higher level contained transition probabilities
among textons. This model was used both to generate new motion
based on user keyframes and to edit existing motion.

3 Motion Graph Construction

In this section, we define the motion graph structure and the proce-
dure for constructing it from a database of clips.

A clip of motion is defined as a regular sampling of the charac-
ter’s parameters, which consist of the position of the root joint
and quaternions representing the orientations of each joint. We

Figure 2: Consider a motion graph built from two initial clips. (top) We can trivially
insert a node to divide an initial clip into two smaller clips. (bottom) We can also insert
a transition joining either two different initial clips or different parts of the same initial
clip.

also allow clips (or, more generally, sets of frames) to be anno-
tated with other information, such as descriptive labels (“walking,”
“karate”) and constraint information (left heel must be planted on
these frames).

A motion graph is a directed graph where all edges correspond to
clips of motion. Nodes serve as choice points connecting these
clips, i.e., each outgoing edge is potentially the successor to any
incoming edge. A trivial motion graph can be created by placing
all the initial clips from the database as arcs in the graph. This cre-
ates a disconnected graph with 2n nodes, one at the beginning and
end of each clip. Similarly, an initial clip can be broken into two
clips by inserting a node, since the later part of the motion is a valid
successor to the earlier part (see Figure 2).

A more interesting graph requires greater connectivity. For a node
to have multiple outgoing edges, there must be multiple clips that
can follow the clip(s) leading into the node. Since it is unlikely that
two pieces of original data are sufficiently similar, we need to create
clips expressly for this purpose. Transitions are clips designed such
that they can seamlessly connect two segments of original data. By
introducing nodes within the initial clips and inserting transition
clips between otherwise disconnected nodes, we can create a well-
connected structure with a wide range of possible graph walks (see
Figure 2).

Unfortunately, creating transitions is a hard animation problem.
Imagine, for example, creating a transition between a run and a
backflip. In real life this would require several seconds for an ath-
lete to perform, and the transition motion looks little like the mo-
tions it connects. Hence the problem of automatically creating such
a transition is arguably as difficult as that of creating realistic mo-
tion in the first place. On the other hand, if two motions are “close”
to each other then simple blending techniques can reliably gener-
ate a transition. In light of this, our strategy is to identify portions
of the initial clips that are sufficiently similar that straightforward
blending is almost certain to produce valid transitions.

The remainder of this section is divided into three parts. First we
describe our algorithm for detecting a set of candidate transition
points. In the following two sections we discuss how we select
among these candidate transitions and how blends are created at
the chosen transition points. Finally, we explain how to prune the
graph to eliminate problematic edges.

475

3.1 Detecting Candidate Transitions

As in our system, motion capture data is typically represented as
vectors of parameters specifying the root position and joint rota-
tions of a skeleton on each frame. One might attempt to locate
transition points by computing some vector norm to measure the
difference between poses at each pair of frames. However, such
a simple approach is ill-advised, as it fails to address a number of
important issues:

1. Simple vector norms fail to account for the meanings of the
parameters. Specifically, in the joint angle representation
some parameters have a much greater overall effect on the
character than others (e.g., hip orientation vs. wrist orienta-
tion). Moreover, there is no meaningful way to assign fixed
weights to these parameters, as the effect of a joint rotation on
the shape of the body depends on the current configuration of
the body.

2. A motion is defined only up to a rigid 2D coordinate trans-
formation. That is, the motion is fundamentally unchanged if
we translate it along the floor plane or rotate it about the ver-
tical axis. Hence comparing two motions requires identifying
compatible coordinate systems.

3. Smooth blends require more information than can be obtained
at individual frames. A seamless transition must account not
only for differences in body posture, but also in joint veloci-
ties, accelerations, and possibly higher-order derivatives.

Our similarity metric incorporates each of these considerations. To
motivate it, we note that the skeleton is only a means to an end.
In a typical animation, a polygonal mesh is deformed according to
the skeleton’s pose. This mesh is all that is seen, and hence it is a
natural focus when considering how close two frames of animation
are to each other. For this reason we measure the distance between
two frames of animation in terms of a point cloud driven by the
skeleton. Ideally this point cloud is a downsampling of the mesh
defining the character.

To calculate the distance D(
�

i, � j) between two frames
�

i and
� j, we consider the point clouds formed over two windows of
frames of user-defined length k, one bordered at the beginning by�

i and the other bordered at the end by � j. That is, each point
cloud is the composition of smaller point clouds representing the
pose at each frame in the window. The use of windows of frames
effectively incorporates derivative information into the metric, and
is similar to the approach in [Schödl et al. 2000]. The size of the
windows are the same as the length of the transitions, so D(

�
i, � j)

is affected by every pair of frames that form the transition. We use
a value of k corresponding to a window of about a third of a second
in length, as in [Mizuguchi et al. 2001]

The distance between
�

i and � j may be calculated by computing
a weighted sum of squared distances between corresponding points
pi and p′

i in the two point clouds. To address the problem of find-
ing coordinate systems for these point clouds (item 2 in the above
list), we calculate the minimal weighted sum of squared distances
given that an arbitrary rigid 2D transformation may be applied to
the second point cloud:

min
θ ,x0,z0

∑
i

wi‖pi −Tθ ,x0,z0
p′

i‖
2 (1)

where the linear transformation Tθ ,x0,z0
rotates a point p about the

y (vertical) axis by θ degrees and then translates it by (x0,z0). The

Figure 3: An example error function for two motions. The entry at (i, j) contains
the error for making a transition from the ith frame of the first motion to the jth frame of
the second. White values correspond to lower errors and black values to higher errors.
The colored dots represent local minima.

index is over the number of points in each point cloud. The weights
wi may be chosen both to assign more importance to certain joints
(e.g., those with constraints) and to taper off towards the end of the
window.

This optimization has a closed-form solution:

θ = arctan
∑i wi(xiz

′
i − x′izi)−

1
∑i wi

(xz′− x′z)

∑i wi(xix
′
i + ziz

′
i)−

1
∑i wi

(xx′ + zz′)
(2)

x0 =
1

∑i wi
(x− x′ cos(θ)− z′ sinθ) (3)

z0 =
1

∑i wi
(z + x′ sin(θ)− z′ cosθ) (4)

where x = ∑i wixi and the other barred terms are defined similarly.

We compute the distance as defined above for every pair of frames
in the database, forming a sampled 2D error function. Figure 3
shows a typical result. To make our transition model more com-
pact, we find all the local minima of this error function, thereby ex-
tracting the “sweet spots” at which transitions are locally the most
opportune. This tactic was also used in [Schödl et al. 2000]. These
local minima are our candidate transition points.

3.2 Selecting Transition Points

A local minimum in the distance function does not necessarily im-
ply a high-quality transition; it only implies a transition better than
its neighbors. We are specifically interested in local minima with
small error values. The simplest approach is to only accept local
minima below an empirically determined threshold. This can be
done without user intervention. However, often users will want to

476

set the threshold themselves to pick an acceptable tradeoff between
having good transitions (low threshold) and having high connectiv-
ity (high threshold).

Different kinds of motions have different fidelity requirements. For
example, walking motions have very exacting requirements on the
transitions — people have seen others walk nearly every day since
birth and consequently have a keen sense of what a walk should
look like. On the other hand, most people are less familiar with bal-
let motions and would be less likely to detect inaccuracies in such
motion. As a result, we allow a user to apply different thresholds
to different pairs of motions; transitions among ballet motions may
have a higher acceptance threshold than transitions among walking
motions.

3.3 Creating Transitions

If D(
�

i, � j) meets the threshold requirements, we create a tran-
sition by blending frames

�
i to

�
i+k−1 with frames � j−k+1 to

� j, inclusive. The first step is to apply the appropriate aligning
2D transformation to motion � . Then on frame p of the transition
(0 ≤ p < k) we linearly interpolate the root positions and perform
spherical linear interpolation on joint rotations:

Rp = α(p)R �
i+p

+[1−α(p)]R �
j−k+1+p

(5)

qi
p = slerp(qi�

i+p
, qi�

j−k+1+p
, α(p)) (6)

where Rp is the root position on the pth transition frame and qi
p is

the rotation of the ith joint on the pth transition frame.

To maintain continuity we choose the blend weights α(p) accord-
ing to the conditions that α(p) = 1 for p ≤−1, α(p) = 0 for p ≥ k,
and that α(p) has C1 continuity everywhere. This requires

α(p) = 2(
p+1

k
)3 −3(

p+1
k

)2 +1, −1 < p < k (7)

Other transition schemes, such as [Rose et al. 1996], may be used
in place of this one.

The use of linear blends means that constraints in the original mo-
tion may be violated. For example, one of the character’s feet may
slide when it ought to be planted. This can be corrected by using
constraint annotations in the original motions. We treat constraints
as binary signals: on a given frame a particular constraint either ex-
ists or it does not. Blending these signals in analogy to equations 5
and 6 amounts to using the constraints from

�
in the first half of

the transition and the constraints from � in the second half. In this
manner each transition is automatically annotated with constraint
information, and these constraints may later be enforced as a post-
processing step when motion is extracted form the graph. We will
discuss constraint enforcement in more detail in the next section.

Descriptive labels attached to the motions are carried along into
transitions. Specifically, if a transition frame is a blend between a
frame with a set of labels L1 and another frame with a set of labels
L2, then it has the union of these labels L1 ∪L2.

1 2 53 4

7 86

Figure 4: A simple motion graph. The largest strongly connected component is
[1,2,3,6,7,8]. Node 4 is a sink and 5 is a dead end.

3.4 Pruning The Graph

In its current state there are no guarantees that the graph can syn-
thesize motion indefinitely, since there may be nodes (called dead
ends) that are not part of any cycle (see Figure 4). Once such a node
is entered there is a bound on how much additional motion can be
generated. Other nodes (called sinks) may be part of one or more
cycles but nonetheless only be able to reach a small fraction of the
total number of nodes in the graph. While arbitrarily long motion
may still be generated once a sink is entered, this motion is con-
fined to a small part of the database. Finally, some nodes may have
incoming edges such that no outgoing edges contain the same set
of descriptive labels. This is dangerous since logical discontinuities
may be forced into a motion. For example, a character currently in
a “boxing” motion may have no choice but to transition to a “ballet”
motion.

To address these problems, we prune the graph such that, starting
from any edge, it is possible to generate arbitrarily long streams
of motion of the same type such that as much of the database as
possible is used. This is done as follows. Every frame of original
data is associated with a (possibly empty) set of labels. Say there
are n unique sets. For each set, form the subgraph consisting of
all edges whose frames have exactly this set of labels. Compute
the strongly connected components (SCCs) of this subgraph, where
an SCC is a maximal set of nodes such that there is a connecting
graph walk for any ordered pair of nodes (u,v). The SCCs can be
computed in O(V + E) time using an algorithm due to Tarjan. We
eliminate from this subgraph (and hence the original motion graph)
any edge that does not attach two nodes in the largest SCC. Once
this process is completed for all n label sets, any nodes with no
edges are discarded.

A warning is given to the user if the largest SCC for a given set
of labels contains below a threshold number of frames. Also, a
warning is given if for any ordered pair of SCCs there is no way
to transition from the first to the second. In either case, the user
may wish to adjust the transition thresholds (Section 3.2) to give
the graph greater connectivity.

4 Extracting Motion

By this stage we have finished constructing the motion graph. Af-
ter describing exactly how a graph walk can be converted into dis-
playable motion, we will consider the general problem of extracting
motion that satisfies user constraints. Our algorithm involves solv-
ing an optimization problem, and so we conclude this section with
some general recommendations on how to pose the optimization.

477

4.1 Converting Graph Walks To Motion

Since every edge on the motion graph is a piece of motion, a graph
walk corresponds to a motion generated by placing these pieces
one after another. The only issue is to place each piece in the cor-
rect location and orientation. In other words, each frame must be
transformed by an appropriate 2D rigid transformation. At the start
of a graph walk this transformation is the identity. Whenever we
exit a transition edge, the current transformation is multiplied by
the transformation that aligned the pieces of motion connected by
the transition (Section 3.1).

As noted in Section 3.3, the use of linear blends to create transitions
can cause artifacts, the most common of which is feet that slide
when they ought to be planted. However, every graph walk is au-
tomatically annotated with constraint information (such as that the
foot must be planted). These constraints are either specified directly
in the original motions or generated as in Section 3.3, depending on
whether the frame is original data or a transition. These constraints
may be satisfied using a variety of methods, such as [Gleicher 1998]
or [Lee and Shin 1999]. In our work we used the method described
in [Kovar et al. 2002].

4.2 Searching For Motion

We are now in a position to consider the problem of finding motion
that satisfies user-specified requirements. It is worth first noting that
only very special graph walks are likely to be useful. For exam-
ple, while a random graph walk will generate a continuous stream
of motion, such an algorithm has little use other than an elaborate
screen saver. As a more detailed example, consider computing an
all-pairs shortest graph walk table for the graph. That is, given a
suitable metric — say, time elapsed or distance travelled — we can
use standard graph algorithms like Floyd-Warshall to find for each
pair of nodes u and v the connecting graph walk that minimizes the
metric. With this in hand we could, for example, generate the mo-
tion that connects one clip to another as quickly as possible. This is
less useful than it might appear at first. First, there are no guaran-
tees that the shortest graph walk is short in an absolute sense. In our
larger test graphs (between a few and several thousand nodes) the
average shortest path between any two nodes was on the order of
two seconds. This is not because the graphs were poorly connected.
Since the transitions were about one-third of a second apiece, this
means there were on average only five or six transitions separat-
ing any two of the thousands of nodes. Second, there is no control
over what happens during the graph walk — we can’t specify what
direction the character travels in or where she ends up.

More generally, the sorts of motions that a user is likely to be in-
terested in probably don’t involve minimizing metrics as simple as
total elapsed time. However, for complicated metrics there is typ-
ically no simple way of finding the globally optimal graph walk.
Hence we focus instead on local search methods that try to find a
satisfactory graph walk within a reasonable amount of time.

We now present our framework for extracting graph walks that con-
form to a user’s specifications. We cast motion extraction as a
search problem and use branch and bound to increase the efficiency
of this search. The user supplies a scalar function g(w,e) that eval-
uates the additional error accrued by appending an edge e to the
existing path w, which may be the empty path /0. The total error
f (w) of the path is defined as follows:

f (w) = f ([e1, . . . ,en]) =
n

∑
i=1

g([e1, . . . ,ei−1],ei) (8)

where w is comprised of the edges e1, . . . ,en. We require g(w,e) to
be nonnegative, which means that we can never decrease the total
error by adding more edges to a graph walk.

In addition to f and g, the user must also supply a halting condi-
tion indicating when no additional edges should be added to a graph
walk. A graph walk satisfying the halting condition is called com-
plete. The start of the graph walk may either be specified by the
user or chosen at random.

Our goal is find a complete graph walk w that minimizes f . To give
the user control over what sorts of motions should be considered in
the search, we allow restrictions on what edges may be appended to
a given walk w. For example, the user may decide that within a par-
ticular window of time a graph walk may only contain “sneaking”
edges.

A naı̈ve solution is to use depth-first search to evaluate f for all
complete graph walks and then select the best one. However, the
number of possible graph walks grows exponentially with the av-
erage size of a complete graph walk. To address this we use a
branch and bound strategy to cull branches of the search that are in-
capable of yielding a minimum. Since g(w,e) by assumption never
decreases, f (w) is a lower bound on f (w+v) for any v, where w+v
is the graph walk composed of v appended to w. Thus we can keep
track of the current best complete graph walk wopt and immediately
halt any branch of the search for which the graph walk’s error ex-
ceeds f (wopt). Also, the user may define a threshold error ε such
that if f (w) < ε , then w is considered to be “good enough” and the
search is halted.

Branch and bound is most successful when we can attain a tight
lower bound early in the search process. For this reason it is worth-
while to have a heuristic for ordering the edges we explore out of
a particular node. One simple heuristic is to order the children
greedily — that is, given a set of unexplored children c1, . . . ,cn,
we search the one that minimizes g(w,ci).

While branch and bound reduces the number of graph walks we
have to test against f , it does not change the fact that the search
process is inherently exponential — it merely lowers the effective
branching factor. For this reason we generate a graph walk incre-
mentally. At each step we use branch and bound to find an optimal
graph walk of n frames. We retain the first m frames of this graph
walk and use the final retained node as a starting point for another
search. This process continues until a complete graph walk is gen-
erated. In our implementation we used values of n from 80 to 120
frames (2 2

3 to 4 seconds) and m from 25 to 30 frames (about one
second).

Sometimes it is useful to have a degree of randomness in the search
process, such as when one is animating a crowd. There are a cou-
ple of easy ways to add randomness to the search process without
sacrificing a good result. The first is to select a start for the search
at random. The second is retain the r best graph walks at the end
of each iteration of the search and randomly pick among the ones
whose error is within some tolerance of the best solution.

4.3 Deciding What To Ask For

Since the motion extracted from the graph is determined by the
function g, it is worth considering what sorts of functions are likely
to produce desirable results. To understand the issues involved, we
consider a simple example. Imagine we want to lay down two clips
on the floor and create a motion that starts at the first clip and ends
at the second. Both clips must end up in the specified position and
orientation. We can formally state this problem as follows: given a
starting node N in the graph and a target edge e, find a graph walk

478

Figure 5: The above motion was generated using the search algorithm discussed in
this section. The halting condition was to play a specific clip of two kicking motions.
The error of a complete graph walk (which necessarily ended with the kicking clip) was
determined by how far away this kicking clip was from being in a particular position
and orientation. The character spends approximately seven seconds making minute
adjustments to its orientation in an attempt to better align itself with the final clip.
The highlighted line shows the the path of the target clip in its desired position and
orientation.

that ends with e such that the transformation T applied to e is as
close as possible to a given transformation T′. What one will re-
ceive is a motion like in Figure 5, where the initial clip is a walking
motion and the final clip is a kick. The character turns around in
place several times in an attempt to better line up with the target
clip.

While it’s conceivable that given a larger database we would have
found a better motion, the problem here is with the function we
passed into the search algorithm. First, it gives no guidance as to
what should be done in the middle of the motion; all that matters
is that the final clip be in the right position and orientation. This
means the character is allowed to do whatever is possible in order
to make the final fit, even if the motion is nothing that a real person
would do. Second, the goal is probably more specific than neces-
sary. If it doesn’t matter what kick the character does, then it should
be allowed to choose a kick that doesn’t require such effort to aim.

More generally, there are two lessons we can draw from this ex-
ample. First, g should give some sort of guidance throughout the
entire motion, as arbitrary motion is almost never desirable. Sec-
ond, g should be no more restrictive than necessary, in order to give
the search algorithm more goals to seek. Note the tradeoff here
— guiding the search toward a particular result must be balanced
against unduly preventing it from considering all available options.

5 Path Synthesis

We have cast motion extraction as an optimization problem, and
we have given some reasons why the formulation of this optimiza-
tion can be difficult. To demonstrate that it is nonetheless possible
to come up with optimization criteria that allow us to solve a real
problem, we apply the preceding framework to path synthesis. This
problem is simple to state: given a path P specified by the user, gen-
erate motion such that the character travels along P. In this section
we present our algorithm for path synthesis, present results, and
discuss applications of the technique.

5.1 Implementing Path Synthesis

Given the framework in the previous section, our only tasks are to
define an error function g(w,e) and appropriate halting criteria. The
basic idea is to estimate the actual path P′ travelled by the character
during a graph walk and measure how different it is from P. The
graph walk is complete when P′ is sufficiently long.

A simple way to determine P′ is to project the root onto the floor
at each frame, forming a piecewise linear curve1. Let P(s) be the
point on P whose arc-length distance from the start of P is s. The
ith frame of the graph walk, wi, is at some arc length s(wi) from the
start of P′. We define the corresponding point on P as the point at
the same arc length, P(s(wi)). For the jth frame of e, we calculate
the squared distance between P′(s(e j)) and P(s(e j)). g(w,e) is the
sum of these errors:

g(w,e) =
n

∑
i=1

‖P′(s(ei))−P(s(ei))‖
2 (9)

Note that s(ei) depends on the total arc length of w, which is why
this equation is a function of w as well as e. The halting condition
for path synthesis is when the current total length of P′ meets or
exceeds that of P. Any frames on the graph walk at an arc length
longer than the total length of P are mapped to the last point on P.

The error function g(w,e) was chosen for a number of reasons.
First, it is efficient to compute, which is important in making the
search algorithm practical. Second, the character is given incentive
to make definite progress along the path. If we were to have re-
quired the character to merely be near the path, then it would have
no reason not to alternate between travelling forwards and back-
wards. Finally, this metric allows the character to travel at what-
ever speed is appropriate for what needs to be done. For example,
a sharp turn will not cover distance at the same rate as walking
straight forward. Since both actions are equally important for ac-
curate path synthesis, it is important that one not be given undue
preference over the other.

One potential problem with this metric is that a character who
stands still will never have an incentive to move forward, as it can
accrue zero error by remaining in place. While we have not en-
countered this particular problem in practice, it can be countered
by requiring at least a small amount of forward progress γ on each
frame. More exactly, we can replace in Equation 9 the function
s(ei) with t(ei) = max(t(ei−1)+ s(ei)− s(ei−1),t(ei−1)+ γ).

Typically the user will want all generated motion to be of a single
type, such as walking. This corresponds to confining the search
to the subgraph containing the appropriate set of descriptive labels.
More interestingly, one can require different types of motion on dif-
ferent parts of the path. For example, one might want the character
to walk along the first half of the path and sneak down the rest.
The necessary modifications to accomplish this are simple. We will
consider the case of two different motion types; the generalization
to higher numbers is trivial.

We divide the original path into two smaller adjoining paths, P1 and
P2, based on where the transition from type T1 to type T2 is to occur.
If the character is currently fitting P2, then the algorithm is identical
to the single-type case. If the character is fitting P1, then we check
to see if we are a threshold distance from the end of P1. If not, we
continue to only consider edges of type T1. Otherwise we allow
the search to try both edges of type T1 and T2; in the latter case we
switch to fitting P2. Note that we only allow this switch to occur
once on any given graph walk, which prevents the resulting motion
from randomly switching between the two actions.

5.2 Results

While the examples shown in Figure 1 suggest that our technique
is viable, it perhaps isn’t surprising that we were able to find accu-
rate fits to the given paths. As shown in the upper portion of the

1In our implementation we defined the path as a spline approximating
this piecewise linear path, although this has little impact on the results.

479

figure, the input motion had a fair amount of variation, including
straight-ahead marches, sharp turns, and smooth changes of curva-
ture. However, our algorithm is still useful when the input database
is not as rich. Refer to Figure 6. We started with a single 12.8-
second clip of an actor sneaking along the indicated path. To stretch
this data further, we created a mirror-image motion and then built a
motion graph out of the two. From these we were able to construct
the new motions shown at the bottom of the figure, both of which
are themselves approximately 13 seconds in length.

Figure 7 shows fits to a more complicated path. The first example
uses walking motions and the second uses martial arts motions; the
latter demonstrates that our approach works even on motions that
are not obviously locomotion. For the walking motion, the total
computation time was nearly the same as the length of the generated
animation (58.1 seconds of calculation for 54.9 seconds animation).
The martial arts motion is 87.7 seconds long and required just 15.0
seconds of computation. In general, in our test cases the duration of
a generated motion was either greater than or approximately equal
to the amount of time needed to produce it. Both motion graphs had
approximately 3000 frames (100 seconds) of animation.

Finally, Figure 8 shows paths containing constraints on the allow-
able motion type. In the first section of each path the character is
required to walk, in the second it must sneak, and in the third it
is to perform martial arts moves. Not only does the character fol-
low the path well, but transitions between action types occur quite
close to their specified locations. This example used a database of
approximately 6000 frames (200 seconds).

All examples were computed on a 1.3GHz Athlon. For our largest
graph (about 6000 frames), approximately twenty-five minutes
were needed to compute the locations of all candidate transitions
points. Approximately five minutes of user time were required to
select transition thresholds, and it took less than a minute to calcu-
late blends at these transitions and prune the resulting graph.

5.3 Applications Of Path Synthesis

Directable locomotion is a general enough need that the preceding
algorithm has many applications.

Interactive Control. We can use path synthesis techniques to give
a user interactive control over a character. For example, when the
user hits the left arrow key the character might start travelling east.
To accomplish this, we can use the path fitting algorithm to find the
sequence of edges starting from our current location on the graph
that best allow the character to travel east. The first edge on the
resulting graph walk is the next clip that will be played. This pro-
cess may then be repeated. To make this practical, we can precom-
pute for every node in the graph a sequence of graph walks that
fit straight-line paths in a sampling of directions (0 degrees, 30 de-
grees, . . .). The first edges on these paths are then stored for later
use; they are the best edges to follow given the direction the char-
acter is supposed to travel in.

High-Level Keyframing. If we want a character to perform certain
actions in a specific sequence and in specific locations, we can draw
a path with subsections requiring the appropriate action types. This
allows us to generate complex animations without the tedium of
manual keyframing. For this reason we term this process “high-
level” keyframing — the user generates an animation based on what
should be happening and where.

Motion Dumping. If an AI algorithm is used to determine that a
character must travel along a certain path or start performing cer-
tain actions, the motion graph may be used to “dump” motion on
top of the algorithm’s result. Hence motion graphs may be used

as a back-end for animating non-player characters in video games
and interactive environments — the paths and action types can be
specified by a high-level process and the motion graph would fill in
the details.

Crowds. While our discussion so far has focused on a single char-
acter, there’s no reason why it couldn’t be applied to several char-
acters in parallel. Motion graphs may be used as a practical tool
for crowd generation. For example, a standard collision-avoidance
algorithm could be used to generate a path for each individual, and
the motion graph could then generate motion that conforms to this
path. Moreover, we can use the techniques described at the end of
Section 4.2 to add randomness to the generated motion.

6 Discussion

In this paper we have presented a framework for generating realis-
tic, controllable motion through a database of motion capture. Our
approach involves automatically constructing a graph that encapsu-
lates connections among different pieces of motion in the database
and then searching this graph for motions that satisfy user con-
straints. We have applied our framework to the problem of path
synthesis.

As we had limited access to data, our largest examples used a
database of several thousand frames of motion. While we believe
this was sufficient to show the potential of our method, a character
with a truly diverse set of actions might require hundreds or thou-
sands of times more data. Hence the scalability of our framework
bears discussion. The principle computational bottleneck in graph
construction is locating candidate transitions (Section 3.1). This re-
quires comparing every pair of the F frames in the database and
therefore involves O(F2) operations. However, this calculation is
trivial to parallelize, and distances between old frames needn’t be
recomputed if additions are made to the database.

It is the exception rather than the rule that two pieces of motion are
sufficiently similar that a transition is possible, and hence motion
graphs tend to be sparse. In our experience the necessary amount
of storage is approximately proportional to the size of the database.

The number of edges leaving a node in general grows with the size
of the graph, meaning the branching factor in our search algorithm
may grow as well. However, we expect that future motion graphs
will be larger mainly because the character will be able to perform
more actions. That is, for example, having increasing amounts of
walking motion isn’t particularly useful once one can direct a char-
acter along nearly any path. Hence the branching factor in a par-
ticular subgraph will remain stationary once that subgraph is suf-
ficiently large. We anticipate that typical graph searches will be
restricted to one or two subgraphs, and so we expect that the search
will remain practical even for larger graphs.

We conclude with a brief discussion of future work. One limita-
tion of our approach is that the transition thresholds must be spec-
ified by hand, since (as discussed in Section 3.2) different kinds of
motions have different fidelity requirements. Setting thresholds in
databases involving many different kinds of motions may be overly
laborious, and so we are investigating methods for automating this
process. A second area of future work is to incorporate parameter-
izable motions [Wiley and Hahn 1997; Rose et al. 1998] into our
system, rather than having every node correspond to a static piece
of motion. This would add flexibility to the search process and po-
tentially allow generated motion to better satisfy user constraints.
Finally, we are interested in applying motion graphs to problems
other than path synthesis.

480

Figure 6: The leftmost image shows the original motion and its reflection and the following images show motion generated by our path synthesis algorithm. The thick yellow
lines were the paths to be fit and the black line is an approximation of the actual path of the character. Note how we are able to accurately fit nontrivial paths despite the limited
variation in the path of the original motion.

Figure 7: The left image shows a walking motion generated to fit to a path that spells “Hello” in cursive. The right image shows a karate motion fit to the same path. The
total calculation time for the walking motion was 58.1 seconds and the animation itself is 54.9 seconds. The 87.7-second karate motion was computed in just 15.0 seconds. All
computation was done on a 1.3gHz Athlon.

Figure 8: These images are both fits to paths wherein the character is required to walk, then sneak, and finally perform martial arts moves. The desired transition points are
indicated by where the curve changes color. Note that the character both fits the path accurately and switches to the appropriate motion type close to the desired location.

481

Acknowledgements

We would like to acknowledge Andrew Gardner, Alex Mohr, and
John Schreiner for assisting in video production, proofreading, and
other technical matters. We also thank the University of Southern
California’s School of Film and Television for their support and
the reviewers for their many useful suggestions. Our work was
made possible through generous motion data donations from Spec-
trum Studios (particularly Demian Gordon), House of Moves, and
The Ohio State University. This work was supported in part by
NSF grants CCR-9984506 and IIS-0097456, the U.S. Army2, the
Wisconsin Alumni Research Fund’s University Industrial Relations
program, equipment donations from IBM, NVidia, and Intel, and
software donations from Discreet, Alias/Wavefront, and Pixar.

References

ARIKAN, O., AND FORSYTHE, D. 2002. Interactive motion generation from exam-
ples. In Proceedings of ACM SIGGRAPH 2002, Annual Conference Series, ACM
SIGGRAPH.

BOWDEN, R. 2000. Learning statistical models of human motion. In IEEE Work-
shop on Human Modelling, Analysis, and Synthesis, CVPR 2000, IEEE Computer
Society.

BRAND, M., AND HERTZMANN, A. 2000. Style machines. In Proceedings of ACM
SIGGRAPH 2000, Annual Conference Series, ACM SIGGRAPH, 183–192.

BRUDERLIN, A., AND CALVERT, T. 1996. Knowledge-driven, interactive animation
of human running. In Graphics Interface, Canadian Human-Computer Communi-
cations Society, 213–221.

BRUDERLIN, A., AND WILLIAMS, L. 1995. Motion signal processing. In Pro-
ceedings of ACM SIGGRAPH 95, Annual Conference Series, ACM SIGGRAPH,
97–104.

FALOUTSOS, P., VAN DE PANNE, M., AND TERZOPOULOS, D. 2001. Composable
controllers for physics-based character animation. In Proceedings of ACM SIG-
GRAPH 2001, Annual Conference Series, ACM SIGGRAPH, 251–260.

GALATA, A., JOGNSON, N., AND HOGG, D. 2001. Learning variable-length markov
models of behavior. Computer Vision and Image Understanding Journal 81, 3,
398–413.

GLEICHER, M. 1998. Retargeting motion to new characters. In Proceedings 0f ACM
SIGGRAPH 98, Annual Conference Series, ACM SIGGRAPH, 33–42.

GLEICHER, M. 2001. Motion path editing. In Proceedings 2001 ACM Symposium on
Interactive 3D Graphics, ACM.

HODGINS, J. K., WOOTEN, W. L., BROGAN, D. C., AND O’BRIEN, J. F. 1995.
Animating human athletics. In Proceedings of ACM SIGGRAPH 95, Annual Con-
ference Series, ACM SIGGRAPH, 71–78.

KOVAR, L., GLEICHER, M., AND SCHREINER, J. 2002. Footskate cleanup for motion
capture editing. Tech. rep., University of Wisconsin, Madison.

LAMOURET, A., AND PANNE, M. 1996. Motion synthesis by example. Computer
animation and Simulation, 199–212.

LEE, J., AND SHIN, S. Y. 1999. A hierarchical approach to interactive motion editing
for human-like figures. In Proceedings of ACM SIGGRAPH 99, Annual Conference
Series, ACM SIGGRAPH, 39–48.

LEE, J., CHAI, J., REITSMA, P. S. A., HODGINS, J. K., AND POLLARD, N. S. 2002.
Interactive control of avatars animated with human motion data. In Proceedings of
ACM SIGGRAPH 2002, Annual Conference Series, ACM SIGGRAPH.

LEE, J. 2000. A hierarchical approach to motion analysis and synthesis for articulated
figures. PhD thesis, Department of Computer Science, Korea Advanced Institute
of Science and Technology.

LI, Y., WANG, T., AND SHUM, H.-Y. 2002. Motion texture: A two-level statistical
model for character motion synthesis. In Proceedings of ACM SIGGRAPH 2002,
Annual Conference Series, ACM SIGGRAPH.

2This paper does not necessarily reflect the position or the policy of the
Government, and no official endorsement should be inferred

MIZUGUCHI, M., BUCHANAN, J., AND CALVERT, T. 2001. Data driven motion
transitions for interactive games. In Eurographics 2001 Short Presentations.

MOLINA-TANCO, L., AND HILTON, A. 2000. Realistic synthesis of novel human
movements from a database of motion capture examples. In Proceedings of the
Workshop on Human Motion, IEEE Computer Society, 137–142.

MULTON, F., FRANCE, L., CANI, M.-P., AND DEBUNNE, G. 1999. Computer
animation of human walking: a survey. The Journal of Visualization and Computer
Animation 10, 39–54. Published under the name Marie-Paule Cani-Gascuel.

PERLIN, K., AND GOLDBERG, A. 1996. Improv: A system for scripting interac-
tive actors in virtual worlds. In Proceedings of ACM SIGGRAPH 96, ACM SIG-
GRAPH, 205–216.

PERLIN, K. 1995. Real time responsive animation with personality. IEEE Transac-
tions on Visualization and Computer Graphics 1, 1 (Mar.), 5–15.

PULLEN, K., AND BREGLER, C. 2000. Animating by multi-level sampling. In IEEE
Computer Animation Conference, CGS and IEEE, 36–42.

PULLEN, K., AND BREGLER, C. 2002. Motion capture assisted animation: Textur-
ing and synthesis. In Proceedings of ACM SIGGRAPH 2002, Annual Conference
Series, ACM SIGGRAPH.

ROSE, C., GUENTER, B., BODENHEIMER, B., AND COHEN, M. F. 1996. Efficient
generation of motion transitions using spacetime constraints. In Proceedings of
ACM SIGGRAPH 1996, Annual Conference Series, ACM SIGGRAPH, 147–154.

ROSE, C., COHEN, M., AND BODENHEIMER, B. 1998. Verbs and adverbs: Multidi-
mensional motion interpolation. IEEE Computer Graphics and Application 18, 5,
32–40.

SCHÖDL, A., SZELISKI, R., SALESIN, D., AND ESSA, I. 2000. Video textures.
In Proceedings of ACM SIGGRAPH 2000, Annual Conference Series, ACM SIG-
GRAPH, 489–498.

SUN, H. C., AND METAXAS, D. N. 2001. Automating gait animation. In Proceedings
of ACM SIGGRAPH 2001, Annual Conference Series, ACM SIGGRAPH, 261–
270.

WASHBURN, D. 2001. The quest for pure motion capture. Game Developer (Decem-
ber).

WILEY, D., AND HAHN, J. 1997. Interpolation synthesis of articulated figure motion.
IEEE Computer Graphics and Application 17, 6, 39–45.

WITKIN, A., AND POPOVIĆ, Z. 1995. Motion warping. In Proceedings of ACM
SIGGRAPH 95, Annual Conference Series, ACM SIGGRAPH, 105–108.

482

